794 research outputs found

    Uniformly accelerating black holes in a de Sitter universe

    Get PDF
    A class of exact solutions of Einstein's equations is analysed which describes uniformly accelerating charged black holes in an asymptotically de Sitter universe. This is a generalisation of the C-metric which includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background. The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black holes vanish.Comment: 6 pages REVTeX, 3 figures, to appear in Phys. Rev. D. Figure 2 correcte

    No Go Theorem for Kinematic Self-Similarity with A Polytropic Equation of State

    Get PDF
    We have investigated spherically symmetric spacetimes which contain a perfect fluid obeying the polytropic equation of state and admit a kinematic self-similar vector of the second kind which is neither parallel nor orthogonal to the fluid flow. We have assumed two kinds of polytropic equations of state and shown in general relativity that such spacetimes must be vacuum.Comment: 5 pages, no figures. Revtex. One word added to the title. Final version to appear in Physical Review D as a Brief Repor

    On the construction of a geometric invariant measuring the deviation from Kerr data

    Full text link
    This article contains a detailed and rigorous proof of the construction of a geometric invariant for initial data sets for the Einstein vacuum field equations. This geometric invariant vanishes if and only if the initial data set corresponds to data for the Kerr spacetime, and thus, it characterises this type of data. The construction presented is valid for boosted and non-boosted initial data sets which are, in a sense, asymptotically Schwarzschildean. As a preliminary step to the construction of the geometric invariant, an analysis of a characterisation of the Kerr spacetime in terms of Killing spinors is carried out. A space spinor split of the (spacetime) Killing spinor equation is performed, to obtain a set of three conditions ensuring the existence of a Killing spinor of the development of the initial data set. In order to construct the geometric invariant, we introduce the notion of approximate Killing spinors. These spinors are symmetric valence 2 spinors intrinsic to the initial hypersurface and satisfy a certain second order elliptic equation ---the approximate Killing spinor equation. This equation arises as the Euler-Lagrange equation of a non-negative integral functional. This functional constitutes part of our geometric invariant ---however, the whole functional does not come from a variational principle. The asymptotic behaviour of solutions to the approximate Killing spinor equation is studied and an existence theorem is presented.Comment: 36 pages. Updated references. Technical details correcte

    Ricci flat rotating black branes with a conformally invariant Maxwell source

    Full text link
    We consider Einstein gravity coupled to an U(1)U(1) gauge field for which the density is given by a power of the Maxwell Lagrangian. In dd-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as d/4d/4. We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking--Page phase transition in spite of conformally invariant Maxwell field.Comment: 13 pages, one figur

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Results of the EUROTeV Post Collision Line Design (PCDL) Task

    Get PDF
    This paper is the deliverable of the EUROTeV Post Collision Line Design (PCDL) task and gives an overview of the published results

    Black Holes in Higher-Dimensional Gravity

    Full text link
    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22, 200

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Technology-Supported Storytelling (TSST) Strategy in Virtual World for Multicultural Education

    Get PDF
    Learning culture through stories is an effective way for multicultural education, since stories are one of the most powerful and personal ways that we learn about the world. Storytelling, the process of telling stories, is a form of communication and a universal expression of culture. With the development of technology, storytelling emerges out of diverse ways. This study explores the storytelling in virtual worlds for multicultural education, and devises a Technology-Supported storytelling (TSST) strategy by examining and considering the characteristics of virtual worlds which could be incorporated into the storytelling, and then uses this strategy to teach Korean culture to students with different culture background. With this innovative TSST strategy in virtual world, this study expects to provide a guide to practice for teaching multicultural in digital era
    corecore